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Abstract 

Quantum chemical solvent effect theories deal with the description of the electronic 
structure of a molecular subsystem embedded in a solvent or other molecular environment. 
The average reaction field theories, which describe electrostatic and polarization interactions 
between solute and solvent, can be formulated in terms of a nonlinear reaction potential 
operator. This operator depends on the one hand on the reaction potential function of 
the solvent, and on the other hand on the charge density operators, which appear in the 
solute-solvent interaction. The former quantity is determined by the physical model of 
the solvent (e.g. dielectric continuum, discrete model, crystal lattice, etc.). The charge 
density operator can be approximated at different levels, like exact, one-centered and 
multicentered multipolar forms. These two ingredients of the theory, the reaction potential 
response function and the specific charge density operator, define unequivocally different 
solvent effect models. Various versions of average reaction field models are critically 
reviewed on the basis of this common theoretical framework. 

1. Introduction 

Recently, a great deal of effort has been devoted to the modeling of physico- 
chemical processes in condensed phases, e.g. solids, liquids, solutions, or biological 
environments. The progress in various fields, like in the theory of intermolecular 
forces, in computer simulation techniques and in solid-state physical methods, enabled 
us to have a better understanding of many of these important phenomena. It became 
evident that, at least in certain cases, the influence of the intermolecular interactions 
on the electronic structure of the constituents is essential. 

In particular, the electronic structure of solute molecules can be strongly 
coupled to the solvent structure and conversely. This effect can be the key element, 
for example, in the understanding of the microscopic mechanism of certain reactions 
in solution [1]. 
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Quantum chemical solvent effect theories [2,3] provide a self-consistent 
description of the solute electronic structure, which is strongly coupled to a polarizable 
environment. Such calculations are indispensable to get an insight into molecular 
properties [4-6] and reactivity [7-10] in condensed phases. This goal is usually 
achieved by means of a solute-only model Schr6dinger equation, corresponding to 
some simplified representation of the solvent. 

Many semi-empirical and ab initio models have been proposed in the past 
twenty-five years, beginning with the heuristic solvation model of Klopman in 
1967 [11] and the reaction field models of Rinaldi and Rivail [12], Newton [13] in 
1973, and of Tapia and Goscinski [14] in 1975. These models and later developments 
[18, 15-26] sometimes seem to be very different although it is widely accepted that 
the underlying basic physical model in all the cases is the reaction field idea, 
attached to the name of Onsager [27]. This model assumes that the polar solute 
system, which is embedded in a solvent, polarizes its surroundings. The polarized 
environment creates a field, the reaction (or polarization) field which, in turn, acts 
back on the solute subsystem. 

This simple picture has been originally formulated for a point dipole, embedded 
in a dielectric continuum, and many quantum chemical adaptations of the continuum 
model followed this line. Later, refinements improved the representation of both the 
solute charge distribution and the solvent, and led to various forms of the corresponding 
effective quantum chemical solute operator. Unfortunately, the differences of the 
mathematical formulations were an obstacle to having a direct comparison of different 
models, which is badly lacking in this field. 

In the present contribution, it is attempted to formulate the most important 
quantum chemical solvent effect models within a relatively simple, common 
mathematical framework. By doing this, we extend in some sense earlier efforts of 
Tapia, outlined in some of his review papers [2,28]. 

Why is it important to get a kind of unified view of the various quantum 
chemical solvent effect models? We think that this can be rewarding from several 
diffcrent aspects. First, a unified view may render it easier to appreciate the physical 
significance of the models, which are quite often of rather different origin, and 
makes it easier to analyse their scope of validity. Secondly, the application of 
various perturbational schemes to the solute-only effective Schr0dinger equation 
can be done directly on the generally formulated case, thus avoiding eventual 
pitfalls due to specific aspects of certain simplified models and reducing considerably 
the analytical eflort [29]. Thirdly, the computational implementation of the various 
solvent effect models can be greatly simplified. In particular, the very same quantum 
chemical code can be used to take into account the effect of very different solvent 
(or environmental) models. Such a computer program system is under development 
in our laboratories [30]. 

The solvent effect models are based on the assumption that there exists 
a free energy functional (or at zero absolute temperature, a total energy functional) 
J(~,  X) which depends on the solute wave function V/and on some generalized 
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solvent coordinates, which will be denoted here by X. (A list of symbols can be 
found at the end of the paper). This energy functional takes the general form 

J(v/ ,x)= (qtlI4Slv/) + (v/lfi, lqt)v~ + ½(wl~lv/)G~.,,(v/l~,,Iv/). (1.1) 

The detailed meaning of these quantities will be given later. For the time being, it 
is sufficient to note that/3 r stands for the solute charge density operator, Vfl is the 
solvent permanent potential and GBr, r, is the solvent reaction potential response 
function. A kind of summation convention is followed for the repeated lower indices 
r and r ' ,  which means integration with respect to these space variables (see later). 

The interpretation of J(gt, X) depends on the physical model for the solvent 
or environment. As far as our model system is considered to be at zero absolute 
temperature, J corresponds to a total internal energy. On the other hand, as far as 
V~ and G B , r,r are derived from a statistical mechanical model at nonzero absolute 
temperatures, one should consider J as a free energy. 

A nonlinear Schr0dinger-like equation can be derived from this energy (or 
free energy) functional by the straightforward application of the variation principle, 
i.e. by requiring that the first variation of J with respect to the solute wave function 

vanishes, 

OJ(~,X) = 0 (1.2) 
3~ 

and taking into account the normalization condition of the solute electronic wave 
function [31,32]. This procedure leads to the following Schrtidinger-like equation: 

^ ' ~ B  ^ { n  s "l- prV B -1- prGr,r(~lpr, [ I//')} I I//') = E I I//), (1.3) 

where E is the Lagrange multiplier, introduced for the wave function normalization 
condition. 

Special properties of this nonlinear SchrOdinger equation have been 
discussed in the literature [33], and it has also been pointed out that an improper 
application of the variation principle may lead to erroneous solvent effect models 
[25,32,34-37] .  

The average potential V~ can be very important in order to have a physically 
complete solvent model [2,31]. Many solvent models are limited to only this term, 
which is relatively easy to include in existing quantum chemical computer codes, 
usually as the potential of effective point charges [38,39]. 

The treatment of the reaction potential operator 

= p,.lq,. = p, .G, .  ,.(~1.,6,., I~v). (1.4) 

where the reaction potential function FI~ has been introduced as 
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FI. B = c , , r ,<  Iv) ,  (1.5) 

is considerably more delicate because this is the term responsible for the nonlinearity 
of  the solute-only model SchrOdinger equation. Our main concern in this review 
will be to develop different models for the reaction potential and discuss their 
implementation in quantum chemical computational schemes. 

The various average reaction field type solvent effect models will be grouped 
according to the type of the underlying physical model. The following different 
cases will be considered: 

• continuum solvent model with various cavity shapes, 

• discrete solvent model with fixed nuclear configuration, 

• discrete solvent model with thermal averaging, 

• identical subsystems in ordered phase (molecular crystals), 

• identical subsystems in disordered phase (molecular liquids). 

Explicit expressions of the reaction potential response function will be given 
and/or derived for the above situations. 

Two different approaches can be followed to evaluate the matrix elements of 
the reaction potential for a given solvent model. 

The first one consists in the numerical calculation of the reaction potential 
FIB(r), i.e. the potential of the polarized charge density of the solvent and taking 
its matrix elements: 

(/2 ]I~ I v) = I d3 r Z~ (r)H a (r)z  v (r). (1.6) 

The advantage of this approach is that the reaction potential is handled as a one- 
electron perturbation, like the external potential. 

The second type of approach is based on the knowledge of the reaction 
potential response function Ga(r, r ' )  and on an analytical treatment of  the reaction 
potential operator. For this purpose, one needs the explicit quantum chemical expression 
of the molecular charge density as a sum of nuclear and electronic contributions: 

a ~,0" 

(1.7) 

where Z. is the nuclear charge and the electronic charge density is expanded in 
terms of the zz(r)  basis functions and of the first-order density matrix Paz. The 
solute-solvent  interaction matrix elements (1.6) can be written as: 

( lwI v) = E Zald3rGa(Ra'r)Z* (r)z (r) 
a 

- Z Paz I I  d3rdr'3X*~(r)zv(r)Ga (r,r')z*~ (r ' )xa(r ' )  • 
Za 

(1.8) 
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These integrals are analogous to the usual Coulomb and nuclear attraction 
integrals, where the Coulomb-kernel has been replaced by the effective interaction 
kernel GB(r, r'). 

In the following, the names "reation potential response function" and "effective 
interaction kernel" will be used practically as synonyms. In effect, there are two 
complementary views of a charge distribution in a polarizable surrounding. One 
possibility is to consider the interaction of the charge distribution with the potential 
of the induced charge density of the surroundings, i.e. with the reaction potential. 
Alternatively, the polarizable surroundings can be regarded as the mediator of an 
effective interaction (analogous to the usual Coulomb interaction, mediated by the 
vacuum). These views are just different readings of the same mathematical expression 
of the energy of charge distribution on a polarizable environment. 

The quantum chemical implementation of the above solute-only model 
Schr~dinger equation proceeds through the specification of the above matrix elements, 
usually through an approximate representation of the solute charge density f3r. One 
of the following three possibilities can be considered: 

• exact solute charge density, 

• multi-center (distributed) multipole expansion, 

• one-center (molecular) multipole expansion. 

An important feature is that the representation of the solute charge density should 
be identical both in the perturbation operator and in the reaction potential expression. 
The use of different (usually approximate) operators in these two places may lead 
eventually to the violation of the variation principle [25,37]. 

The first possibility, the exact calculation of all integrals of the above type, 
may be impractical even for simple solvent models and one may wish to introduce 
reasonable approximations by replacing the elementary charge distributions of the 
orbital products by their multipolar expansion. This kind of approximation has been 
used to accelerate integral evaluation in extended systems, like crystals [40], and 
has been proposed to evaluate intermolecular electrostatic interactions in the framework 
of various distributed multipole schemes [41-47]. 

A convenient mathematical tool to introduce multipolar expansions of the 
solute charge distributions in the expression of the reaction potential matrix elements 
is provided by the concept of equivalent charge density [48-50]. As is explained 
in the appendix, one can define an equivalent charge density operator, and use 
formally the same expressions, which are valid for continuous charge distributions. 
The formal equivalent charge density operator reads as 

( - -1)  n ~.(n)a X7 W . V v S ( a _ r )  ' (1.9) 
~(r) = ~ ~ (2n - 1)!! "~a#...v-a *~. .  

a gl 

where ~(a~. v are operators of distributed (e.g. atomic) multiple moments, associated 
with the following kernel in the traceless Cartesian definition according to Buckingham: 
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~(a~ ) v ( r ) =  (-1)" r2.+ 1 (1.10) 
"" n! ~ra~r[j.. .Orv " 

n is the order of  multipole and the Greek subscripts stand for the x, y, z Cartesian 
components. The specific recipe of distributing the charge density is not important 
here: it can be one of  the standard procedures [42,44,45] or any related method, 

The reaction field interaction energy 

W = I  ^ B ~( ~lP,-I ~)G,v., (~ I,~,., I~) (1.11) 

in the multicentered multipolar approximation can be expressed as: 

( - l )  n ~:(n)a g (n ' )b  f~ab 

W = 1 ~  ( 2 n -  1)!!(2n'-  1)!! ~cq3...v~cGY...v'"-'a3...v,a'3'...v" 
ab nn" 

ab The effective interaction kernel tensors Ga#...v,a,#,...v, are defined as: 

(1.12) 

n' r r r r' r'  b Gacc~...v, ce/r...v , = (-1) VaV/~.. .VvVa, Vt~ . . . .  

n" a a *iTaVlb Vlb V b f2ab = (-1) VaV 3 . . . .  v - a ' - 3  . . . .  v "  • (1.13) 

The effective interaction kernels are defined with a sign factor ( - 1 )  n' in order to 
preserve the similarity with the corresponding interaction energy formula with usual 
Coulomb interaction kernels. 

The explicit expressions for the first few effective interaction tensors are: 

G~b = va ~ab (1 .14 )  

G a  ba = - V b a G  ab, (1.15) 

b Via wba"~ab 
Gaa fl = - . c t v  f l ~  , (1.16) 

ab v7 a K7 a g~ ab f2 (1.17) '-',~/~ = - a - / 3 ' , -  , 

G~[~ = V b V bt:~b (1 .18)  

The solute-solvent  electrostatic energy becomes in this approximation a sum of  
multipolar terms of different order: 

1 {QaGabQb ~a~ba b . aGabQb 

a b 

__ ntag2ab . b + 1 t 3 a G b a  t~b 1 o a  c'_ab t")b } 
~ a " a , 3 ~ 3  "$~ ~fl'-'a# + -$ a#"'a#~ + . . . .  (1.19) 
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The components of the effective multipolar interaction kernels are defined as successive 
derivatives of the reaction potential response functions, in strict analogy with the 
usual Coulomb interaction tensors. A considerable difference is that while the 
Coulomb interaction is isotropic, the G-tensors reflect the eventual anisotropy of 
the polarizable environment. For example, one has for the Coulomb tensors 

T~ b = - ra ha, (1.20) 
but 

b , - c f .  (1.21) 

The use of the multicentered multipolar expansion of the solute charge 
distribution is indispensable to treat larger systems with a reasonable accuracy. 

The organization of the paper is as follows. First, in section 2, some of the 
continuum models will be overviewed and the explicit form of the effective Hamiltonian 
will be given in terms of reaction potential response functions and approximate 
charge density and/or multipole operators. 

A quantum chemical embedding equation will be derived in section 3 for a 
solute subsystem, coupled to an electronically polarizable surrounding with fixed 
nuclear configuration. This model is developed further to a statistical mechanical 
mean field model. 

The special case of a system composed of identical molecules is discussed 
in section 4. The translational symmetry imposes the equivalence of the constituents 
in the case of the crystals, while for molecular liquids, this equivalence holds only 
in the sense of a mean field model. 

In all examples, the emphasis will be laid on the derivation of the reaction 
potential response function. Eventual computational realizations of the models are 
also briefly discussed, pointing out the approximations used by them for the 
representation of the solute charge density. 

2. Embedding in dielectric continuum 

The overwhelming majority of quantum chemical solvent effect calculations 
uses dielectric continuum methods, based on the model of a solute sitting in a cavity 
in a continuous dielectric medium. 

A considerable effort has been devoted to refine the method, starting from 
the simple case of a spherical cavity to more general cavities, like ellipsoids or other 
forms, which are better adapted to the molecular structure (geometry) of the solute. 
Another attempt to generalize the continuum models was to drop the uniformity of 
the dielectric. It should not be forgotten, however, that the validity of these continuum 
models is quite limited. Therefore, sophisticated refinements of such a crude model, 
where the solvent is a structureless macroscopic body, seem to be hardly justifiable. 

On the other hand, simple dielectric models are able to reproduce the most 
essential qualitative features of the solvent reaction potential response function and 
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they provide an invaluable tool for obtaining a qualitative-semiquantitative idea 
about the possible role of solvent effects, even when our knowledge about the 
solvent is very limited. 

The fundamental equations yielding the reaction potential inside a cavity 
embedded in a dielectric medium can be found in many papers and textbooks [48]. 
Instead of rederiving these formulae for different cavity shapes, explicit expressions 
will be given directly for the reaction potential response function. Some improvements 
with respect to the conventional calculation of the reaction potential can be proposed 
using the distributed multipole expansion of the molecular charge distribution. 

2.1. CONTINUUM MODELS WITH REGULAR CAVITY SHAPE 

Although cavities of simple shapes, like spheres or ellipsoids, are not always 
well-adapted to the envelope of the molecular electronic charge density, their advantage 
is that the reaction potential response function takes a closed analytical form in 
these cases. 

2.1.1. Spherical cavity in a dielectric continuum 

The simplest form of the solute cavity is a sphere with radius a. The solution 
of the Laplace equation for a charge distribution sitting inside the cavity is relatively 
straightforward [48, 51 ]. The standard expression of the reaction potential response 
function G(ri, rj) is 

G(ri,rj) = ~.~ f.(rirj)nP.(cosTij), (2.1) 
n=0 

where Pn(x) are the associated Legendre functions and Nj is the angle of vectors r i 
and rj. The vector ri pointing from the center of the cavity to the ith point of the 
charge distribution is characterized by the polar coordinates (ri,  Oi, (Pi) = (ri, Wi). 

According to the addition theorem 

4 ~  n • 

Z Ynm(O)i)Ynm(O)j), (2.2) Pn(cos 7ij) = 2n + lm=_  

the associated Legendre functions can be expanded in the spherical harmonics 
Y,,,,(ogi). Introducing the modified spherical harmonic C,m(co): 

I 4~ Ynm(O~) C,~(¢o)= 2 n + l  (2.3) 

and the regular spherical harmonic Rn,.(r): 

R.m(r) = r"C~(oo), (2.4) 
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the following expression is obtained for the reaction potential response function: 

e~ n 

G(ri'rj ) = Z Z fnRnm(ri)Rnm(rj )" (2.5) 
n = 0  m = - - n  

The reaction potential factors f ,  depend on the dielectric constant e and the 
radius of the cavity a. For a homogeneous dielectric medium, one has [51] 

(1 - e)(n + 1) 1 
f . ( e , a )  = e(n + 1) + 1 a 2"+1" (2.6) 

An obvious shortcoming of the homogeneous dielectric medium model is that 
it does not take into account the existence of a cybotactic region around the solute. 
The fact that the solvent structure is different from that of the bulk can be accounted 
for by considering a nonuniform dielectric constant. 

In the spherical cavity model, proposed by Beveridge and Schnuelle [52], the 
dielectric constant in the immediate neighborhood of the cavity is different from the 
bulk value e0. The molecule is sitting inside a cavity of radius a, characterized by 
el. The internal cavity is surrounded by an intermediate region (a < r < b), where 
the dielectric constant is e~oc. The corresponding reaction potential factors are given 
by the expressions: 

(n + 1)(1 - e ; )  1 
fn (eo, Clot, a, b) = 

( n + l ) e a + n  a 2n+l 

+(n+l)(1-eb)I1 - nO-ea)] 1 
(n + 1)eo + n (n + 1)ea + n b 2 n + l '  (2.7) 

where ea = eloc/ei, eb = eo/elo~, and 

gall  4 (n + 1)(1 - ea)(1 - go) a2n+l] -1 
Ea / ?. + ; j (2.8) 

Other forms of the reaction potential factors corresponding to a nonuniform 
dielectric medium can also be found in the literature. For example, Block and 
Walker studied a dipolar solute in a spherical cavity embedded in a medium with 
an exponentially varying dielectric constant [53], and Raudino et al. considered a 
diffuse interface of two dielectric regions with different permittivities [54]. 

Exact molecular charge distribution in a spherical cavity 

In most of the applications of the spherical cavity model, the charge density 
operator is "exact" and the solute-solvent  interaction energy is 
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o o  n 

W = 1  Z E J~(O,~)(O,,,,), (2.9) 
/ I  /"/1 = - - n  

where (Q,,,,,} is the expectation value of the molecular spherical harmonic multipole 
moment component of order n 

( (~")  = I d3r( IF[/9(r)l ~)R"m(r)" (2.10) 

Although the representation of the charge density operator is formally "exact" in 
this approach, one has to truncate the molecular multipole moment components at 
relatively low order. This kind of method has been extensively used by the Nancy 
group [4,6] and by ]kgren and coworkers in Sweden [55]. 

Distr ibuted mult ipoles in a spherical  cavity 

An alternative approach, which has been explored until now only in the 
context of classical molecular charge densities, consists in using a distributed multipoles 
approximation of the molecular charge density [56]. 

Let us suppose that the molecular charge density is represented by a set of 
atomic (or other kind of distributed) multipole moments ~ ; a  v. The solute-solvent 
interaction energy is: 

1 ~-"  (-1) t ~:(t)a x(l')b cab , , (2.11) 
W = 7~-"~b ~/'(21 - 1)!!(21'- ~c~...v'~a'3 ...v"-'a[~...v,a'# ...v ' 1)!! 

where the reaction potential response tensor elements are: 

ab G a~...v,a'#'._v" 
oo n 

~-Ta w b  K'/b b = (-1)n'V~V~ . . . .  v-a'--/~ . . . .  Vv'~-, E fnRnm(ra)Rnm(rb). 
/ I  / ' ? 1 =  - - g l  

(2.11) 

A possible advantage of this expression is that precise results can be obtained by 
,~(t)a relatively low-order distributed multipole moments ~a/3...v, provided that the sum 

over n is sufficiently convergent. 

2.1.2. Ell ipsoidal  cavity in uniform dielectrics 

The shape of the cavity should follow as closely as possible the molecular 
shape and in effect the spherical cavity model often turns out to be inappropriate 
for molecules with strongly non-spherical shape. 

Rivail and Terryn [57] derived analytical expressions for the electrostatic 
energy of a charge distribution in an ellipsoidal cavity. The solution of the Laplace 
equation for this case can be most conveniently expanded in terms of ellipsoidal 
multipole moment functions QLM of the charge distribution sitting in the cavity. 
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The reaction field response function in this model is: 

o. 2L 

G(ri'rj ) = 2 2 FLMRLM(ri)RLM(rj )" (2.13) 
L M=0 

For practical calculations, it is more convenient to expand the ellipsoidal multipoles 
in terms of the usual spherical harmonic multipole moment components Rim, where 
l is of like parity as L and l < L. Expanding the ellipsoidal multipoles in terms of 
spherical moments, 

L l 

~tt.M(r) =~.  ~'~ Ytt.M,tr~Rlm(r), (2.14) 
I=0 m=-1  

the reaction potential response function can be cast in a similar form as in the 
spherical cavity case: 

= 

lm I'm" 

where the reaction potential factor [58] reads as 

(2.15) 

ftm,rm" = ~ -~tm,Z.M Srt.M ACM,rm ' . (2.16) 
LM 

Remark that these reaction potential factors depend not only on l, the order of the 
spherical multipole moment, but also on m, the angular quantum number, which 
reflects that the reaction potential is not spherically symmetrical in the ellipsoidal 
cavity. Cross-terms appear also, involving multipole components of different order, 
which were missing in the more symmetrical spherical cavity case. 

2.2. CONTINUUM MODELS WITH IRREGULAR CAVITY SHAPE 

Considerable effort has been devoted to the development of continuum models 
with cavity shapes, which are better adapted to the molecular shape than simple 
spheres or ellipsoids. A reasonable choice is to construct the molecular cavity from 
interpenetrating Van der Waals spheres of the constituting atoms. The price to pay 
for this refinement is that the reaction potential response functions can no longer 
be calculated analytically. 

2.2.1. Multipolar reaction field factors 

The classical method to find the multipolar reaction field factors ~(e)  or 
~,,,,t,,,,,(e) is to write the general analytical expression of the potential inside and 
outside the cavity, and determine the reaction field factors from the continuity 
conditions on the cavity surface. 
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As has been pointed out recently by Rivail et al. [6], this procedure, which 
leads to closed expressions in the case of regular cavities, like spheres or ellipsoids, 
can be applied in a straightforward manner to a numerical determination of the 
reaction field factors for arbitrary cavity shapes. 

The potential inside the cavity is the superposition of the multipolar potential 
VM(r): 

VM (r) = ~,  llm(r)Qtm (2.17) 
lm 

and of the reaction potential ~(r): 

VR (r) = ~ ~ ftm.rm'Rlm (r)Ql',n" (2.18) 
lm l'm" 

Here, Rim(r) is the regular spherical harmonic, defined in eq. (2.4), and It,,,(r) is the 
irregular spherical harmonic: 

llm(r ) = Z r-(l+l)Clm(O)). (2.19) 
lm 

Qt,, is the multipole moment component of the solute charge distribution in the 
cavity and ftm, r,," is the multipolar reaction field factor. 

The potential outside the cavity must satisfy the Laplace equation, which has 
the general solution: 

Vs(r) = Z rtmttm(r). (2.20) 
lm 

The continuity of the potential means that for an arbitrary point s on the 
surface of the cavity: 

Vu(s) + VR(s) = Vs(s). (2.21) 

The normal components of the electric field must satisfy 

[VVu(s)]. + [VVR(s ) ] .  = e[VVs(s)],,, (2.22) 

where e is the relative dielectric constant of the continuum. The tangential components 
of the field satisfy the simple continuity condition: 

[VVu(s)], + [VVR(s)], = [VVs(s)],. (2.23) 

These equations, applied to a sufficiently large number of surface points, lead 
to an overdetermined system for the unknown multipolar reaction field factors 

fLM, lm: 
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It, m, (S)I~M (S) - el~m, (S)ILM (S) 

I n = ZfLM,lm[ERIm(S ) rm,(S) R~m(s)lrm,(S)]. (2.24) 
lm 

The corresponding expression of the reaction potential response function is 
formally identical with the case of the ellipsoidal cavity: 

G(r/,rj) = ~ ~ftm,r.,,Rtm(rz)Rrm.(r)). (2.251 
lm I'm" 

2.2.2. Integral equation method of  Durand 

The case of a cavity of general shape has been discussed by the Pisa 
group [8,59], Constanciel [36] and Claverie [60]. The solution of the electrostatic 
problem is based on an integral equation [61], which determines the polarization 
charge density tr(s) on the cavity surface S containing the charge distribution p(r) 
of the solute: 

f (e)cr(s)  = n(s) . E°(s)  - ~ d2s ' n(s) . T(s, s')cr(s'), (2.261 
S 

where n(s) is the normal vector directed outwards from the surface at the surface 
point s. E°(s) is the electric field of the solute charges: 

E°(s)  = - fd3r  T(s, r)p(r) .  (2.271 

T(s, r) is the charge-dipole interaction kernel: 

1 s - r  
T(s,r)  = (2.28~ 

47reo ] s - r l  3 '  

and f ( e )  is a factor depending on the solvent dielectric constant: 

1 l + e  
f ( e )  = - -  . (2.291 

2eo 1 - e  

A thorough analysis of this integral equation in the context of continuum models 
of the solvent effect description has been given by Constanciel [36]. His aim was 
twofold. First, to obtain a discretized form of eq. (2.26), which is adapted to 
numerical calculations, and secondly, to get some insight into the nature ot 
approximations inherent to the so-called solvation models. 

In the forthcoming discussion, addressed to the first issue, we follow quite 
closely the derivation given by Constanciel. 
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One can divide the surface S of the cavity into M disjoint subsets S = ~'t,. Si. 
A discretized matrix equation can be obtained by integrating separately on the si 
surface elements and summing these contributions afterwards: 

Q. = QO + ~,~ ooijQj. (2.30) 

J 

In this equation, the total surface charge Qi, the zeroth order surface charge QO and 
the interaction matrix ¢oij are defined by: 

Qi = I d 2S O'($), (2.31) 
si 

f ( e )Q  ° = Id2s n(s) .  E°(s) ,  (2.32) 
si 

f(e)o)ij = - I d2s n(s) . T(s, s j). (2.33) 
sl 

Introducing the M-element vectors Q, QO and the M × M matrix o9. (2.30) reads 

Q = QO + a~ Q, (2.34) 

which can be solved formally, yielding 

Q = (I - a~) -1QO = SQO (2.35) 

Here, the screening matrix S is defined as 

S = (I - ~a) -1. (2.36) 

The reaction potential H, is the potential of the surface charge distribution. 
Taking into account eqs. (2.27) and (2.32), and introducing 

-~(si, r) = f d2s n(s) . T(s, r), (2. 37) 

st 

the reaction potential response function is 

Gr,r" : ~ T(r, si)Sij "~(sj,r'), (2.38) 
ij 

where T(r, si)= Ir-si1-1 is the Coulomb interaction kernel. 
As was pointed out by Constanciel [36], this reaction potential response 

function is not symmetrical with respect to the interchange of r and r '  as a consequence 
of the discretized approximation. Since a non-symmetric reaction potential response 
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function is not consistent with the variational treatment of the solute-solvent free 
energy, it is recommended to symmetrize (],,r' 

- -  1 - -  f t 

Gr,r" - 7~.~ {T(r ,  s l )S i jco(s j , r  ) + T ( r  , s i )S i jco(s j , r )} .  (2.39) 
ij 

This expression provides the most general, essentially numerical, solution of the 
reaction potential response function in a cavity of general shape. 

Constanciel suggested the use of Korobov's grid technique, originally used 
by Claverie et al. in a similar context [62], to calculate the integrals needed for the 
definition of the OJij matrices. An alternative approach, avoiding the explicit numerical 
integrations, has been proposed and implemented by the Pisa group. 

2.2.3.  P i sa  m o d e l  

In contrast to the direct solution of the above equation by matrix inversion, 
suggested by Constanciel [36], the Pisa group developed an iterative scheme [8,59], 
based on the recursion formula: 

Qn = QO + ogQn-1, (2.40) 

where O n is the nth approximation to the surface charges. 
Miertu~ et al. [8,59] approximated QO and w i j b y  the simplified expressions, 

without doing any numerical integration on the surface elements, as: 

f ( e ) a  ° = Asin i • E 0 , (2.41) 

f ( e)oglj = - Asini . Tij , (2.42) 

f ( e )co i i  = 1 + i~) ) (2.43) 

where R i is the radius of the sphere Si (Van der Waals sphere) associated with the 
point i. 

Unfortunately, according to our best knowledge, no direct comparisons were 
done of this scheme with the Korobov grid technique/direct matrix inversion procedure. 
Therefore, it is quite difficult to judge a priori the eventual advantages of the two 
different computational approaches. 

2.3. SOLVATON AND GENERALIZED BORN MODELS 

Finally, one has to mention the continuum model, which was implemented 
first in a self-consistent quantum chemical calculation: the solvaton model [11]. 
This model was introduced in a rather heuristic manner as a kind of generalization 
of the Born model for ionic solvation [63]. 
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The difficulties of interpretation of the underlying physical model provide at 
least a partial explanation of the surprisingly high number of erroneous publications 
with this kind of model [15, 17,64], and of the many slightly different versions of 
the solvaton theory. A quite satisfactory rationalization of the solvaton models has 
been given by Constanciel [36], who was able to derive the Generalized Born 
formula [63] and the Extended Generalized Born formula [25] from the integral eq. 
(2.26). He shows that quite drastic approximations are needed for that and explained 
the failure of these models. Nevertheless, in the context of semi-empirical quantum 
chemical schemes, the use of these models can be judged as acceptable, and there 
is a continuing interest in novel parametrization schemes of the solvaton 
models [65]. 

A possible interpretation of the solvaton models emerges from a picture 
where the corresponding reaction potential response function is considered as the 
kernel of a uniformly screened interaction of the solute charges: 

1 
Gr,r = g(e) - - ,  (2.44) 

I r - r l  

where g(e) is a simple function of the solvent dielectric constant. This interpretation 
points to the major deficiency of the underlying physical model, supported by the 
analysis of Constanciel: implicitly, all the solute charges are sitting in their own 
cavity, immersed in a dielectric medium. Obviously, this is a quite unrealistic 
picture of a solvated molecule. 

3. Embedding in discrete environment 

With the development of diffraction and spectroscopic techniques and increasing 
computer simulation possibilities, the construction of reliable microscopic models 
of liquid and condensed phase solutions becomes almost a routine task. Although 
the simple continuum models have the advantage that one can estimate the solvent 
(environmental) effects on the electronic structure without detailed structural data, 
such a crude model is not always satisfactory. 

In the following, the average reaction field model will be derived for a set 
of interacting molecules using quantum chemical considerations, related to the 
theory of intermolecular forces. First, an effective "solute-only" equation will be 
derived for a set of interacting solute and solvent molecules at fixed nuclear 
configuration, and this model is then generalized to statistical ensembles. 

3.1. DISCRETE SOLVENT MODEL 

Solvent effect models represent typical embedding situations, where one 
deals with a small system of interest, which is surrounded by a considerably larger 
environment, the solvent. The usual model system consists of a solute (S) subsystem 
and a solvent ("bath", B), characterized by the total Hamiltonian: 
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/~ =/~s + ~B +/~sB, (3.1) 

where the 171 sB interaction operator can be written in the Longuet-Higgins  [66] 
notation as: 

12I sB = ~f d3r d3r'~S (r) T(r,r')~B (r'). (3.2) 

This operator can be written with the summation convention introduced before as 

I~iSB ^S ^B = Pr rryp~,. (3.3) 

Here, ~X(r) is the total charge density operator of the system X(=S or B) involving 
Nx nuclei and nx electrons: 

Nx nx 
[)X (r )  = ~. ,Zat~(r - Ra) - ~.~ ~(y  - n ) .  (3.4) 

a i 

T(r, r') = Ir- r" 1-1 is the Coulomb interaction kemel and S(r) is the three-dimensional 
delta function. 

The usual Born-Oppenheimer  approximation can be used to separate the 
electronic and nuclear motions in the solute-solvent  supersystem, leading to an 
electronic Hamiltonian, which depends parametrically on the nuclear coordinates. 
According to the general philosophy of embedding, a model Hamiltonian should be 
constructed which depends explicitly only on the electronic coordinates of the 
solute subsystem. 

3.2. SOLUTE ELECTRONIC STRUCTURE AT FIXED SOLVENT CONFIGURATION 

3.2.1. Solute-only Schr6dinger equation 

It shall be assumed that the solute and solvent subsystems are separated from 
each other by a distance, where the overlap between them is sufficiently small and 
the total wave function can be expressed as a simple Hartree product of the ns- and 
nB-electron wave functions ~ and VB: 

[W) = I v/S~tB). (3.5) 

In practice, this means that we have to assume that a repulsive potential energy term 
EreSBp keeps the subsystems in the region of small or negligible overlap, thus rendering 
acceptable the product approximation. 

Another important physical interaction, neglected in the simple mean field 
approximation, which will be introduced in the following is the dispersion energy, 

sB E,]is p. Since the dispersion forces, like the repulsion forces at the negligible overlap 
region, have little influence on the electronic structure of the constituents, we can 



11o J.G. Angyfn, Quantum chemical solvent effect theories 

neglect their effect on the electronic SchrOdinger equation, but not in the total 
energy. Accordingly, we can write the approximate total energy of the solute-  
solvent supersystem as the energy in the Hartree approximation, corrected by the 
physically most important repulsion and dispersion terms: 

E = (WIfil~l ' )  = ( ~ s ~ B  I~QI ws~us) + E~SBp + E~S~p. (3.6) 

In the simple product approximation, the electronic SchrOdinger equation for 
the total system at a fixed nuclear configuration is: 

{fis + fl e + fiSB}[ ~S~B) = El ~/SIvB). (3.7) 

Let us introduce the meanfield approximation, which leads to the following set of 
coupled equations: 

{fis + (fiSB)B}I~S) = {~: _ ( h B ) B }  i ~ s ) ,  

{fte + (flSB)s} I~O ) = (~ - ( f iS)s} l~Bo ). (3.8) 

Here, the brackets stand for normalized expectation values 

(,~)x = (q/Xl: ' l  ~/x) 
( ~x  I q/x ) • (3.9) 

The solvent is supposed to be in its ground electronic state, and the solute can be, 
in principle, in an arbitrary ground or excited electronic state k. 

B~¢ replacing the exact intermolecular potential operator/~sB with its average 
value (HSB), the intersystem correlation effects are neglected. This error has been 
compensated for by adding a dispersion energy term ES~p to the total energy 
at each nuclear configuration of the solvent-solute system. 

The coupled mean field eqs. (3.8) can be solved at different levels, namely 

(1) a self-consistent solution can be obtained iteratively by optimizing both 
subsystems in the field of the other; 

(2) the solvent subsystem can be kept rigid and the solute wave function 
optimized in the permanent field of the solvent; 

(3) linear polarization of the solvent subsystem can be allowed and the solute 
wave function optimized in the permanent + polarization potential of  the 
solvent. 

The iterative solution, when both subsystems are treated on an equal footing, 
has been advocated by Otto and Ladik in their Mutually Consistent Field method 
[67-71],  by Weinstein in the Interaction Modified Field Approach [72], and in the 
Har t ree-Har t ree-Fock method [73-75]. A very similar iterative procedure has 



J.G. ,~ngydn, Quantum chemical solvent effect theories 111 

been used by several authors to describe the electrostatic interaction of strictly 
localized two-electron bonds in large covalent systems [76]. 

A trivial way to uncouple the mean field eqs. (3.8) is to evaluate the mean 
potential from the charge density of the unperturbed solvent wave functions. This 
method has been frequently applied for solvent effect problems in the context of 
the so-called discrete models [38, 39]. 

As far as the solute is polar, the mutual polarization of the two subsystems 
cannot be neglected. In such cases it seems reasonable to uncouple the mean field 
equations by the following first-order perturbational Ansatz on the solvent wave 
function I I go B) : 

I~g) =lOng ) -  Z <¢fflrvSI~0B> 1¢bB) =[q~oB) +/~VSlO0B)" (3.10) 
b,o AEB( 0 -~ b) 

Here, I~0~) is an eigenfunction of the unperturbed solvent Hamiltonian operator with 
eigenvalues EbB : 

/4BIq~ff) = Eft I¢oB), (3.11) 

the excitation energies are defined as 

 B(o b)= eo B, 

and /~o B is the reduced resolvent associated with B: 

eg- h 
(3.12) 

The operator of the mean potential created by the solute is 

~s = (~Sl/~SB i ivy" ) 

= II  d3r d3r'c3t~ (r) T(r ,r ' ) (  lift I~ s (r')l v/s) 

^B Sl:,S (3.13) 

In the last expression, the simplified notation introduced earlier has been 
used again, where repeated lower indices r, r '  mean integration over these space 
variables. 

By virtue of this first-order Ansatz, eq. (3.10), the solute Schr6dinger 
equation has been uncoupled, and the following solute-only effective equation is 
obtained: 
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f-I s (~B o Ih sB I~o B) + 

b(~o) AE t~ (0 --) b) 

(~B'Ps'~B\('~B hsBI¢:o ) } 
- Z  ~'o, k , 'eb/  ~'b iv/S>=ESl~g~). (3.14) 

b(*0)  ~ B ( 0  -') b) 

The first perturbation term is the permanent electrostatic potential ~B due to the 
unperturbed solvent charge density: 

~B=(~0BI/~SBI~o B) ^s B ~,ST. / ~ B \  = Pr Vr = Pr r , r  \ P r  / 0 "  (3.15) 

The two further terms correspond to the reaction (or polarization) potential. This 
can be made apparent if we define the charge density response function [77] (generalized 

B , polarizability function) of the solvent Cr- , r -  , which for real wave functions reads 
a s :  

B ^B B B ^B B 
B (q~o IP :  Ieb )(~b IP:'I~0 ) Cr-r-,  = 2 y ,  B ^B = - 2(q~o IPr-/~Pfl-' I~g). (3.16) 

b(•O) /~B(0 "-) b) 

Writing explicitly the expectation value over the solute wave function and 
introducing the solvent charge density response function, the following expression 

^ B  is obtained for I-I~, the reaction potential operator: 

f i r =  ~ST. ,-.B -,. , ,  s ^s s ,~S,-,B.eI,:,S, - - P r  r , r" t~r"r ' l r ' r"  \ l[/k [Pr" I I~[k ) -" Pr  "J r,r" \Pr  / k .  (3.17) 

A further simplification can be achieved by carrying out the integration over the 
solvent variables. The reaction potential response function GrB'~q is defined as: 

G rB'r d = - T  r r"C B T r" " ( 3 . 1 8 )  
, r " , r  "# , r  " 

The above sign convention has been chosen in order to remain consistent with the 
usual choice of sign of the dipolar response function. 

The reaction potential response function characterizes the linear electronic 
polarization of the solvent subsystem in a given geometrical arrangement with 
respect to the solute. 

Thus, one can write the "solute-only" model SchrOdinger equation: 

aSGB el l  S ^S S {hS~_~:~:rB.~lJr r.r,,~ipr,[~OCk)}[~lS ) S S = Ek I gtk ). (3.19) 

The effect of the solvent is fully characterized in the present approximation 
B,el by its permanent potential Vf and its linear response function Gr, r, . These quantities 
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can be calculated, in principle, with any required accuracy, provided that the exact 
solvent wave function is known. This is usually not the case, but the present 
theoretical framework allows us to introduce well-controlled approximations. 

Equation (3.19) is consistent with the result obtained by Tapia [3, 28]. However, 
in contrast to Tapia's derivation, eq. (3.19) has been obtained uniquely with quantum 
chemical methods, without making reference to classical electrodynamical or 
macroscopical arguments. Such macroscopical arguments are usually invoked to 
interpret the difference of the expectation value of the Hamiltonian of eq. (3.19) and 
the corresponding total energy functional (see below). 

The mathematical origin of this difference follows in a straightforward manner 
from the nonlinear character of the solute-only Schr0dinger equation [33]. The 
physical interpretation for dielectric models is usually based on thermodynamic 
arguments [78], identifying the total energy functional with the approximate electrostatic 
free energy of the solute-solvent  system at fixed solute nuclear configuration. This 
view, opposing the expectation value of the nonlinear Hamiltonian (internal energy), 
with the total energy functional (free energy), gives sometimes the fallacious impression 
that the difference has entropy origin. 

Of course, this cannot be the case for the zero-temperature limit. As we shall 
see, this difference can be obtained in a straightforward manner from the zero- 
temperature quantum mechanical perturbation theory. 

3.2.2. Decomposition of the solute-solvent total energy 

Comparison of the solute-only model Schr0dinger eq. (3.19) with the mean 
field eqs. (3.8) makes evident that the total energy of the solute-solvent  system E 
is related to the eigenvalue of the solute-only model Hamiltonian E s by: 

E = E s + < ~toBI/4BI NOB)( V/oBI gtg)- ' .  (3.20) 

The difference comes from the shifted energy of the linearly polarized solvent, 
which should be evaluated to second order. Expanding the normalization in a power 
series, one obtains 

< ~/gl ~?~f ~g >< ~o~j ~,o~> -, 

{Eo" + 

which gives rise to one zeroth-order, two second-order and one fourth-order term. 
Consistently with the second-order approximation, used until now, this latter term 
will be neglected and up to second order one obtains the following result: 

s ( gtoSi r~s/}oB 9sl g/oB ). (3.21) 
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The zeroth-order term E0 B is the unperturbed solvent energy. The second-order terms 
were rearranged by using the general relationship: 

<¢o~V ' ^ s ^ ~  Ro (t:,~. - ~ B ) , ~  os~ ¢g > = (¢g~.sf~.o~.S~¢8> (3.22) 

Putting the expression (3.13) of the solute potential into eq. (3.22) and combining 
it with the definition of the electronic reaction potential response function, eqs. 
(3.16) and (3.18), one obtains that the energy of the polarized solvent is raised by 
half the reaction potential interaction energy in the linear response approximation: 

~ = e S + e o . _ ,  s ^ s  s Be ! ~ ^ S  S ~(vklP,  I ~7, )Gr,r (VT, IP,.I V~, ). (3.23) 

It should be emphasized that the factor of 1/2 is a consequence of the linear 
response character of the reaction potential. If higher order (e.g. quadratic) 
hyperpolarizabilities of the solvent were also taken into account, these higher-order 
contributions would have appeared with a different factor, for example, with 1/6 in 
the case of the quadratic hyperpolarizabilities [79]. 

As has been noted in the introduction, the nonlinear solute-only Schn3dinger 
eq. (3.19) can also be obtained by the application of the variation principle to the 
total energy: 

~ =  Eg + ( vS jhs  + ~rvY + ½ ^s Be, s ^s Pr Gr,7' ( vklPr'l V/s) I~'S) • (3.24) 

Such a variational approach will be followed to derive a solute-only mean- 
field SchrOdinger equation for the nonzero temperature case. 

Before treating this case, let us complete the analysis of the zero-temperature 
model by specifying the unperturbed solvent energy, the direct solvent potential and 
the solvent reaction potential response function in terms of the properties of the 
individual solvent molecules. 

3.2.3. Approximate solvent properties 

In the previous discussion, the solvent was treated as a "supermolecule" and 
it has been assumed that the unperturbed solvent wave function and corresponding 
response properties were known. These two quantities are necessary to evaluate the 
solvent charge density: 

~ = (~BI~I~B) (3.25) 

and the solvent charge density response function: 

C B , B ^B ^B ^B B r,r = - 2 ( ~  IPr ROPr,lC~ ). (3.26) 

(The lower index 0 of ~B has been dropped for the sake of notational simplicity.) 
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Note that the solvent charge density response function describes a non-local 
response [77]. 

Obviously, it is usually impractical to consider the solvent as one huge 
supermolecule. Instead, one may divide the solvent into many subunits, the individual 
solvent molecules. It is reasonable to assume that these subunit wave functions are 
known to a sufficient accuracy. Therefore, one can expand the solvent properties 
by the wave functions of these subunits, the solvent molecules. 

According to the spirit of our model, the solvent wave function can be 
expressed as the Hartree product of the non-overlapping subunit wave functions: 

I~ B) = I V/1 V/2 V/3...). (3.27) 

The ~ subunit wave functions are supposed to be related to the wave functions ~i 
of the isolated solvent molecules by the first-order perturbational expression: 

^ i  ^ i I V/i) = idpi ) + R ppldp )~.Tp,q< V/J If3ql v/J), (3.28) 
j~i 

^ .  

where p and q are the space coordinate variables and R' is the reduced resolvent 
of the ith solvent molecule. 

The charge distribution and the energy of the unperturbed solvent are necessary 
to evaluate the permanent solvent potential Vfl and the energy of the solute Eo B, 
respectively, while the approximate solvent charge density response function can 
be obtained by the application of first-order perturbation theory to the solvent 
charge density. 

Solvent average potential 

The solvent permanent potential Vfl can be calculated from the solvent charge 
density: 

V~ = Tr,p(qbBl~lq~B). (3.29) 

The solvent charge density in the absence of the solute 

i ^ (~BI~rBI~B) = ~<V/IPr Iv/i> (3.30) 
i 

can be obtained from the approximate first-order wave function of the individual 
solvent molecules: 

<¢ t ¢>  = <¢ r e > -  trY, I V/i>. (3.31) 
J 

Here, az,,p is the charge density response function (generalized polarizability) of one 
solvent molecule: 
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ar,pi = - 2(~ il~rRi~p I~i>. (3.32) 

Equation (3.31) defines a system of linear equations for the monomer  charge densities, 
which can be solved by iteration. (Note that all quantities refer to the absolute 
laboratory frame. In practical calculations, the monomer  densities are given in a 
molecule-fixed frame, so the Coulomb interaction tensors should include the appropriate 
rotational transformations.) The charge density of the isolated solvent molecules is: 

( I1 ti IPr III ti ) = (~pi IPr I dP i ) 

_ ' ~  t-1 i T i J  (((pJl~ql~J) _~" t~,J rJk(tpkl~t 
- - r , p -  p ,q  Z.a ~ q , s  J s , t  

j 

J 

where the screening function S~q,, of the solvent is 

(3.33) 

=  r.,SJ - "'  r `j + Z ,r:J - ( 3 . 3 4 )  - - r , p -  p , q  , p  , , ,q . . . .  
k 

In this expression, one can easily recognize the series expansion of  the 
(I + a T) -1 matrix 

S = (I + a T) -1, (3.35) 

and it can be approximated at first order by 

S = I - a T, (3.36) 

i.e. the interaction of the moments  induced by the partner solvent molecules is 
neglected. As has been pointed out by Stone, this latter approximation is more 
coherent with the first-order perturbation approach, adopted for the description of  
the polarization [80]. In effect, a fully iterated S includes infinite order effects, 
while even simple third-order terms are neglected by the linear response assumption. 
This implies that as far as the solvent hyperpolarizability is small, the full iterative 
method can be justified, otherwise the use of single-molecule polarizabilities seems 
to be a better choice. 

By virtue of expression (3.33), the solvent potential can be written as: 

W~ = ~.~ Tr.sS~(p ( ~J I~pl~ j) .  (3.37) 
ij 

Neglecting self-consistency in the mutual polarization of the solvent monomers,  
we have an alternative expression where an inductive correction is superimposed 
to the potential of  the unperturbed monomers:  
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i ^ v /  tp, t¢>-Y__, ' 'J J = Tr,q, aq, qZq,p( ¢ I#plOJ). (3.38) 
i i) 

The  unper turbed  solvent  energy should be calculated with cons is tent  
approximations.  

Approximate solvent energy 

The solvent energy Eo B 

EBo = ~ ( vill:1ilv/i) 1 ~ - ( -V-~  + ~.~(v/ i l~rlv/ i )Ti! , (v /Jl~r ,  lVJ),  (3.39) 
• ij 

calculated from the same wave function Ansatz as the solvent charge density: 

Ill/i) = 1~ i ) + Ripr I~ i ) ~_Tr,iJr, ( v/J IPr' IV~J). (3.40) 
J 

Inserting expression (3.33) of the solvent charge density and expanding the expectation 
value of  the monomer  Hamiltonian to second order, the following energy expression 
is obtained: 

1 j jk ki i il Ira m E B = ~ E i + -~ Y.  (Pp)Sp,qTq,rOt,,,,r;,q,Sq,t,,(Pp,) 
i ijklra 

1 i ik kl lj j, 
+ "2 ~.a (Dr)Sr ,pZ; ,qSq,r"  (Dr ~" (3.41 ) 

ijkt 

The shorthand notation (p~,) stands for the expectation value of  the solvent monomer  
charge distributions. This can be brought to a simpler form by virtue of the 
relationship [81] 

S = (!  - a T S), (3.42) 

which is equivalent to eq. (3.35). Using the symbolic matrix notation: 

S T S  + S T ofT S = S T S  + ( I - S ) T S  = TS .  (3.43) 

The T S matrix can be rewritten by using the series expansion of  S as 

T S = T - T a T +  T o t T o t T - T o t T o t T o ~ T  + . . .  

= T -  T(o~- ofT or+ofT a T  o r - . . .  )T 

= T -  T A T, (3.44) 

where A = S cz is the many-body polarizability matrix. 
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The energy of the unperturbed solvent (by the solute) can be written in terms 
of the monomer energies E' of the direct Coulomb interactions of the monomers and 
of the polarization energy: 

+ 1 x '~.  i .T i k  l - j ,  

i ~j 

_t_l Z /--i "Fik Akt TtJ " J \ tJr] r,p p,q q,r'~Pr')" (3.45) 

Solvent reaction potential 

The solvent reaction potential is the potential of the charge density induced 
by the solute. By virtue of the superposition of the linear perturbations, the effect 
of the solute perturbations on the solvent charge density can be described independently 
from the solvent-solvent induction interactions. In a higher-order approximation, 
a double perturbation approach would be necessary to handle the eventual cross 
terms. In the linear approximation, the wave function Ansatz is simply: 

I V / )=  1~0 i) + R~plc~ i )Tyq(~ /S l~S l~S  ). (3.46) 

The perturbed solvent monomer charge distribution is accordingly: 

( l l t i l~rl l l t i )= Z S ~ ! p ( ( ~ j l ~ p ] ~ j )  _ Otp,qTq,s( js  S ^S [ (3.47) 
j 

The solute-induced solvent charge density A(/3fl) can be written in this approximation 
a s :  

= - ~_~Ar,pT~,s(N s IPs Ill/S), (3.48) 
iJ 

where the many-body polarizability Ari!p can be considered as an approximation to 
the charge density response function of the total solvent: 

C B ~J = S ij a j (3.49) r,p = Z Ar,p r,q q,p " 
ij 

In terms of the many-body polarizability matrix, the explicit expression of 
the reaction potential response function is 

CrBr , = ~"  TSi  AiJ T jS r,p p ,q-q,r ' '  (3.50) 
ij 

A practical implementation of the above scheme can be done in the framework 
of the dipole polarizability approximation. 
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3.2.4. Implementations of the microscopic model 

The microscopic representation of the charge density and polarization density 
of the environment has been advocated about ten years ago by Tapia and his 
coworkers for the representation of protein core effects in enzyme reactions [82], 
in solid state [50] and in microhydrated proton transfer reactions [83]. These 
inhomogeneous reaction field (ISCRF) calculations were carried out at the 
CNDO/2 level. An atomic dipole polarizability description of the charge density 
response function of the environment has been adopted and atomic net charges and 
dipole moments were used to represent the solvent charge density. The corresponding 
reaction potential response function is 

G IsCRF (r, r ') = y~ Ta (r, rk)a~#T# (r~, r'). (3.51) 
k 

Unfortunately, all these ISCRF calculations involved a slight inconsistency, since 
the reaction potential has been calculated from the field arising from the total 
molecular charge and dipole moment, while the interaction with the reaction potential 
has been developed in terms of distributed atomic charges and dipole moments. In 
terms of the molecular and atomic multipole moment developments of the charge 
density operator pmol and pat, respectively, the following effective operator was 
used: 

~/ ISCRF = Hd3rd3r,~at(r) G I S C R F ( r , r , ) <  qtl/)mOl(r,)l q t ) ,  (3.52) 

while the appropriate operator, corresponding to the solute-solvent energy 

W = l f f  d3r d3r,( lff[/3at (r)i i//> G ISCRF (r,r')< I//l#m°l(r')I I~> (3.53) 

would have been obtained by the application of the variation theorem: 

1 3 3 , " a t  ISCRF / mol , l ~ = T f f d  rd rp  (r)G (r,r)<v/[~ (r)ll/t) 

+ 2 ff d3r d3r'pm°I(r)GlSCRF (r , r ' ) (  IF]/)"t (r')[ IF>. (3.54) 

Although the ffqSCRF operator does not satisfy exactly the variation principle, it is 
reasonable to assume that the resulting numerical error is not important and the 
qualitative conclusions obtained from these calculations are not affected. 

In a quite recent application of the generalized SCRF model at ab initio level 
[84], the solvent charge density response function was represented by atomic dipole 
polarizabilities. The induced dipole moments were allowed to interact and in this 
case, the reaction potential response function can be expressed in terms of A, the 
nonlocal many-body dipole polarizability matrix [81,85, 86]: 
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GC;SCgF(r,r ') = ~ T a ( r , r i ) A ~ # T l 3 ( r j , r ' ) .  (3.55) 
ij 

The solute charge density was approximated by atomic multipoles truncated at 
dipolar level, so the solute-solvent  energy is 

2 2 Z {  a ha, b . a n a b a b  , at',ab ,b l  W = QaGabQb + Q G a  t.ta - laa a - laatJa,#~13 ~. (3.56) 
a b 

The reaction potential response tensors are defined by the following relationships: 

Gab ~" 2 TaiAij Tjb "a "1a#1# = G ~ ,  
ij 

G ~b = 2 Tai a ij T jb ba " a # " # r ' r  ~ G a  ' 
ij 

G~a ~" Tbi aij Tja = z_, i a#: l#r lr  , 
ij 

Ga~l 3 = Z Tai A ij TJ b Gba " a~,"r,~" ~/3 = ~,c~" (3.57) 
ij 

Atomic multipole moments can be defined in many different ways, based on various 
partitioning schemes of the electronic charge distribution. In the above-mentioned 
work, the atomic moments were calculated based on the Ruedenberg partitioning 
scheme [87]. The atomic charges in this scheme are the Mulliken charges: 

aa  = Za _ ~ ( P S ) ~ #  (3.58) 
/.tea 

and the a component of the atomic dipole moment is 

I.t~ = - ~ (PS)#vS~al)vp(Zp Ira - R a [Z~).  (3.59) 
pvp~a 

Better representations of the reaction field can be obtained by more sophisticated 
distributed multipole schemes, like those proposed by Stone [43] or Sokalski [45]. 

3.3. SOLUTE ELECTRONIC STRUCTURE IN STATISTICAL MEAN FIELD OF THE SOLVENT 

The mean field model outlined in section 3.2 provides a reasonable 
approximation to the total energy of the solute-solvent  system at fixed nuclear 
configuration. A complete analysis of the problem would only be possible if the full 
(3(Ns + Ns) - 6)-dimensional potential surface were used in a statistical mechanical 
simulation on the nuclear motions. Although such a program will certainly be 
manageable in the future by the rapid development of computer technology, it is 
worthwhile to develop approximate models within the framework of the embedding 
philosophy. 
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3.3.1. Free energy functional in the mean field approximation 

Standard methods of statistical mechanics, involving reduced probability density 
functions, are available to separate the treatment of a small number of nuclear 
degrees of freedom. Such an approach, leading to free-energy surfaces, has been 
proposed for the discussion of conformational equilibria in solution [88-92].  

In contrast to the relatively slow nuclear variables, like torsional coordinates, 
the separation of the fast electronic degrees of freedom represents a different problem. 
Since electrons can adapt themselves instantaneously to changes in the nuclear 
positions in the spirit of the Born-  Oppenheimer approximation, the electronic wave 
function depends parametrically only on the solvent nuclear coordinates. This feature 
would make it impossible, at least in the strict sense, to "pre-average" over the 
solvent coordinates, while such a procedure might be legitimate to separate torsional 
variables. 

In spite of the obvious drawbacks of a pre-averaged, mean field approximation, 
it is important to analyse in some detail this possibility too. This mean field model 
is the implicit physical hint of the continuum models (at least of "equilibrium" 
continuum models [10]), therefore the microscopical interpretation of the appropriate 
reaction potential response function seems to be interesting. 

According to the results of the previous section, the total potential energy of 
the system at fixed solute internal coordinates (x) and solvent configurational coordinates 
(X) is (for the sake of simplicity, the solvent molecules are supposed to be rigid): 

^ 1 I~rB(X)I vS(x,X)) ,  (3.60) = EB(x,X) + ( /S(x,X)lhS(x) + 9p(X)  + 

where the "unperturbed solvent energy" EB(x, X) defines an appropriate "zero- 
order" reference state of the solvent, and the potential and reaction potential operators 
are defined as: 

^B [I r (X) = fiSr (x)FIBr (X). (3.61) 

It is reasonable to incorporate into E~(x, X), in addition to the solvent energy, the 
solute-solvent  repulsion and dispersion terms also: 

SB SB EB(x,X) = E~(X) + Er~p(X,S) + Edisp(X,X). (3.62) 

Note that EB(x, X) can be simply the classical potential energy function, used in 
computer simulations. 

The solvent configuration is defined by the positions of the center of 
mass r of the molecules and by the corresponding Euler angles ~ ,  which define the 
orientation of each molecule. The shorthand notation X means the ensemble of 
the posit ional and orientational coordinates for the solute and the solvent: 
X = {X s, X 1, X z . . . .  }, where X = (r, f~). 
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The configurational partition function of the canonical ensemble at some 
fixed solute internal nuclear coordinates 

J" d X exp[-fl E(x, X)] (3. 63) Z(x) 

cannot be factorized into terms comprising only the solute electronic wave function 
and only solvent nuclear terms, since the solute electronic wave function depends 
parametrically on X. In effect, ~rS(x, X), the solute electronic wave function, minimizes 
the solute-solvent total energy at a given solvent configuration X. 

One can avoid the separate optimization of the solute electronic wave function 
for each solvent configuration by introducing a meanfield approximation, based on 
the following Ansatz: 

^ ( 3 . 6 4 )  EMF(X,X ) = EB(x,X) + (Y(x)IHS(x) + V f ( X )  + -~ 

The mean field solute electronic wave function Y(x) does not depend on the solvent 
configurations X. Since ~'S(x, X) was the optimal electronic wave function for each 
solvent nuclear configuration, the energy EMF calculated with Y(x) is necessarily 
higher than (or at best equal to) E(x, X) at a given solvent configuration. This 
implies that EMF is a striCt upper bound of the potential energy in a given configuration: 

E(x,X)  <_ EMF(X,X ). (3.65) 

Using relationship (3.65), a variation principle is obtained for the approximate free 
energy: 

-fl  In ~ dX exp[-fl E(x, X)] _< - fl In ~ dX exp[-fl EMF (X, X)], (3.66) 

F(x) < FMF(X). (3.67) 

The mean field partition function at fixed solute coordinates ZMF(X) can be 
simplified by using that /_)s and ~f(x) do not depend on the solvent coordinates X: 

ZMF (X) = exp [-fl Fo B (x)l 

× exp[-fl(Y(x)llYlS(x)lY(x))] 

( , B ) × exp[- f l (Y(x) l f iS lY(x)){Vf(x ,X)  + -~ I-I r (x,X)}] B" (3.68) 

This expression has been obtained by multiplying and dividing eq. (3.63) with the 
partition function of the reference solvent state 

exp[-fl Fo B (x)] = f d X exp[-fl E t~ (x, X)], (3.69) 

where the following notation has been introduced for the statistical mean with 
respect to the reference state of the solvent: 
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• ~ d  X . . .  exp[-/3 EB(x,X)] 
( ' ' ' ) B  = Sd  " (3.70) 

It should be pointed out again that EB(x, X) includes the solute-solvent  repulsion 
potential, therefore this reference state corresponds to the solvent where the solute 
cavity has already been prepared. 

An explicit expression of the free energy can be obtained by expanding the 
statistical mean of the exponential expression in eq. (3.68) in cumulant series [93]. 
An analogue of the usual linear reaction field expression can be obtained by truncating 
the cumulant expansion at the second order: 

FMF(X ) = FoB(x) + (Y(x)llClSlY(x)) + (Y(x)lpSlY(x))(V B) 

+ ~' (T(x)I~SlT(x))[(G~.~,t)B + (G~..°')B](T(x)I~S, (3.71) 

This relationship defines the linear response approximation to the solute free-energy 
potential surface FMF(x) as a sum of different contributions, namely the free energy 
of the solvent reference state, the solute energy associated with the mean field wave 
function, the interaction energy of the solute with the mean field of the solvent and 
the so lu te -so lvent  reaction field energy. This latter quantity consists of two 
contributions: the electronic and the orientational ones. 

The orientational reaction potential response function is the classical limit of 
the corresponding static linear response function (see [93, pp. 147-50]):  

(G~ ',:,B or)B = I3[(V~V~q)B--(V~)B(Vrq)B]. (3.72) 

This takes into account the coupling of the charge density of the solute molecule 
with the structure of the solvent: the solute field aligns in competition with the 

/ i", B,el  k thermal movements the neighboring solvent molecules. The other quantity \ " J r , r '  /B 
is the statistical average of the electronic reaction potential response function, 
which has been defined in eq. (3.18), taken at different solvent configurations. This 
describes the deformation of the electronic density of the solvent molecules under 
the effect of the solute field. 

3.3.2. Solute-only statistical mean field Schr6dinger equation 

The optimal mean field solute wave function T can be found by the quantum 
chemical variation method, as outlined in the introduction. The following nonlinear 
SchrOdinger equation is obtained: 

2Sr/,c~B el B or {/~s + f3S(vfl)B + t-', tk~r,';. )8 + (Gr,',:')B ](TI~3S' I'f)}l T)  = EIT). (3.73) 

The derivation of such "statistically significant" Schr6dinger equations has been 
discussed earlier by Tapia [2] and Yomosa [94]. 
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The mean field wave function T plays the role of a "variational parameter" 
and cannot be interpreted as the representation of the electronic structure of a 
particular solute molecule in the presence of a solvent. The physical significance 
of "f can be realized by considering the average value of an arbitrary operator A, 
associated with the solute subsystem: 

Sd X(V(x,X)I41 v/(x,X)) exp[-flE(x,X)] 
(4) (3. 74) 

.[ d X exp[-fl E(x, X)] 

In the mean field approximation, this average can be directly evaluated as a quantum 
chemical expectation value taken with the "If' wave function: 

(4)MF = (Yl4l ' f ) .  (3.75) 

This error of the mean field approximation with respect to the exact value can be 
estimated as 

A(4) = (4 ) -  (A)M  

fdX{(gr(x,X)14 I v(x,X))  - (YIAIY)}exp[-flE(x,X]) 

S d X exp[-fl E(x, X)] 
(3.76) 

The error may be different for different physical quantities. One can anticipate a 
reasonable behavior as far as the mean field average reproduces correctly the expectation 
values associated with low-energy solvent configurations. 

/ ~  B,or \ To our best knowledge, the statistical mechanical calculation of \ " J r , r '  ]B has 
not been attempted up to now for direct use in quantum chemical solvent effect 
calculations. Nevertheless, this would create an interesting link with the popular 
dielectric models. 

In a certain sense, various continuum dielectric models can be regarded as 
approximations to the statistical mechanical mean field theory, replacing reaction 
potential response functions by their classical electrostatic counterpart. The previous 
analysis may give some hints to point out the limitations of the mean field model 
in general and the problems with the interpretation of the corresponding solute 
electronic wave functions. 

4. Embedding in replicates of the subsystem 

A special case of  the solute-solvent  model system is when the total system 
consists of two or more replicates, i.e. strictly identical subunits related to each 
other by appropriate symmetry operations. This can occur, for example, for some 
specific symmetrical configurations of dimers or oligomers of small molecules, and 
also this is the case for molecular crystals. 
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4.1. SYMMETRICAL DIMER 

Let us consider first the simplest model, which consists of only two identical 
subsystems, related by a general symmetry operation (~. Remaining in the framework 
of  the mean field model, described by eqs. (3.8), the subsystem wave functions can 
be obtained by a self-consistent procedure. First the subsystem wave function should 
be optimized in the field of the fixed partner, then the partner charge density should 
be updated by using the symmetry operation relating the two subsystems and the 
new subsystem wave function is obtained in the modified field of the partner. These 
steps can be repeated until convergence. 

Such an iterative scheme can be cast in more compact form if we introduce 
the symmetry relationships directly into eqs. (3.8): 

I V/B) = C~ I v/s), (4.1) 

where Q is a symmetry operator {Ulq}, including a real orthogonal rotation matrix 
U and a translation vector q. The effect of Q on a function z(r) (e.g. an atomic 
orbital) is 

(~z(r) = z[U-1(r  - q)]. (4.2) 

The effective equation for the monomer S reads as 

{/~s + Sd3 rd  3 r,~(r)T(r,r , )(~/ l~t~(r,)~l~)}[v/)  = EI N), (4.3) 

which can be written in an equivalent form by shifting the effect of the symmetry 
operation to the Coulomb interaction kernel: 

{/q + Sd 3 rd 3 r ' ~ ( r )T ( r ,  Ur "  + q)(u/I/3(r')[ ~) } = El ~g). (4.4) 

A similar equation can be written for the monomer B as well. 
The eigenvalues E s and E a of the effective equations for the monomers 

contain both the total interaction energy with the other partner. Therefore, the 
meaningful quantity E/2, the total energy per monomer, can be obtained by subtracting 
the superfluous interaction energy: 

E / 2 = E - 2 S d3 rdg r ' (  o/ l~(r) l  v/)T(r, U r" + q)(u/l~3(r')l ~). (4.5) 

This relationship is formally analogous to (3.24). Nevertheless, the origin of the 
factor of 1/2 is different in the two cases. In the model of identical subsystems, no 
linear response hypothesis was invoked. The factor of 1/2 appears simply to avoid 
double counting of the interaction energy of the monomers. 

In spite of the strong formal similarity of the above equations with those 
derived for the polarizable environment, the essential difference is that eq. (4.4) 
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provides for an exact solution of the mean field equations (there is no first-order 
perturbational approximation). 

4.2. REPLICATES IN ORDERED PHASE: THE SCMP MODEL 

The iterative procedure, making use of the symmetry relationship of the 
subunits, is particualrly well-adapted for the description of the local electronic 
structure of molecular crystals. Several calculations appeared in the literature, where 
the subunit wave function was optimized in the Madelung potential of the whole 
crystal [37,95-101]. In these works, the fractional Mulliken charges obtained from 
the subunit wave functions were used to evaluate the Madelung potential. The 
iterations were carried out until convergence in the Madelung potential, whence the 
name of the method: "self-consistent Madelung potential" (SCMP) approach. Recently, 
this scheme has been reformulated in terms of a nonlinear Schr6dinger equation [37]. 
The effective Schr6dinger equation for the subunit is: 

{1~ +/3rGMrad( Iflfi~r, [ If)} lift)= El If). (4.6) 

Here, GMag stands for the lattice sum: r t r  

GUag = ~ ~ T ( r ,  Uir" + q) (4.7) r , r  

i q 

and the summations run over the i space group operations and the q lattice translations. 
The self-consistent Madelung potential model has been implemented in a 

similar atomic multipolar scheme as the generalized SCRF theory. The only difference 
is in the calculation of the effective interaction kernel tensors, which are defined 
as successive derivatives of the partial Madelung sums 

G ab = ~ ~ T(a, Uib + q). (4.8) 
i q 

For higher-order tensors, one should take into account properly the U~t~ rotation 
matrices associated with the space group operations: 

Gaa a : Vaa Z ~.~ T(a,UiO + q) : Z ~., Va(a, u io  + q), 
i q i q 

=-v Z Z r( a,v'° + q)= Z Z v J (a, v'o + q), 
i q i q 

ab a b G ~n = - V ~Vn Y~ Z r( a,v~o + q) = ~ Y, v'~rr~r(a, v~O + q). 
i q i q 

The lattice sums can be most conveniently calculated by the standard Ewald 
summation method [102,103]. 
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4.3. REPLICATES IN DISORDERED PHASE 

Although the instantaneous environment of each molecule in a liquid depends 
on the actual configuration X, in the mean field approximation pure molecular 
liquids also can be considered as collections of replicates. 

The mean field model implies here that the configuration-dependent electronic 
wave function of a molecule V(x, X) has been replaced by the mean field wave 
function Y(x). The total potential energy of an N-molecule model of the liquid can 
be written: 

1 ~lr(X)Vr(X,T)[T(x)). (4.10) EMF(X,X) = EO(x,X) + NCC(x)lr1(x) + 

E°(x, X) denotes the potential energy of a reference liquid, with electrostatic interactions 
excluded. Although this choice may seem somewhat artificial, it should be kept in 
mind that the structure of molecular liquids is essentially determined by the repulsive 
interactions. This simple Van der Waals model can always be improved bY adding 
the interaction energy due to a reference charge distribution in E°(x, X) and 
renormalizing H, the monomer Hamiltonian, accordingly. Vr(X, T) is the electrostatic 
potential in a given configuration calculated with the electronic density of the mean 
field wave function T. Here, we can use that the mean field charge distribution of 
each individual molecule is the same. The charge distribution of the kth molecule 
can be generated by a translation r ~ and a rotation U(f~) of the center of mass, 
therefore one can write 

V~(X,T) = ~T(r,U(f2~)r'+ rk)(Tl/5(r')lY). (4.11) 
k:tl 

Following an analogous procedure as in the previous section, the free energy 
of the pure liquid in the mean field approximation turns out to be 

l firVr(X,T)lT(x))]) o , (4.12) FMF = F ° -  flln(expl-fl N(T(x)ll?t + 

where the statistical mean ( . . . ) o  is taken on the reference state of the liquid, 
corresponding to the energy E °, Truncating the cumulant expansion of the mean of 
the exponential at the first order, i.e. neglecting the structural implications of the 
electrostatic corrections, the free energy is approximately: 

~ fi,(V,(X,T))olT(x)). (4.13) FMF = F ° + N O ; ( x ) I h  + 

The average potential can be expressed as: 

= f d3r'(  ~ T(r,U(D.k)r' + q~)(Tlfilr, IT) I 
k~l 0 

: f d 3r '  Gliq (r ,r ' ) (y l~lr  , r f  ). (4.14) 
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The effective interaction function for the molecular liquid Gtiq(r, r ' )  can be expressed 
with the angular pair correlation function of the liquid g(r, f~): 

G tiq (r, r') = pN f d 3 r d 3 ~ g(r, f~)T(r, U(f~)r" + r). (4.15) 

There are relatively few works on the direct utilization of statistical mechanically 
calculated pair correlation functions in quantum chemical solvent effect calculations. 
Ses6 and coworkers [104-107] did some systematic studies on the influence of  the 
liquid phase on molecular electronic structure at the CNDO/2 level. In the spirit of 
the ZDO approximation, a tom-atom pair distribution functions were used exclusively 
in setting up the effective potential. This model corresponds to an atomic point 
charge representation of the molecular charge distribution and the following effective 
interaction kernel is obtained for the atom pair a, b: 

G ab = 4~rpNfd r(gab(r ) -- 1)r. (4.16) 

Generalization to higher atomic multipole moments would be necessary for the 
reasonable implementation of the method with ab initio wave functions. 

5. Summary of effective interaction kernels 

Let us summarize the main results of the previous sections by recapitulating 
the most important expressions for the reaction potential response function derived 
for different cases. Our aim was to stress formal analogies of various approaches, 
which treat solvent effects by effective quantum chemical Hamiltonian methods and 
underline the basic features of the corresponding physical model. 

As has already been emphasized, only average reaction field models were 
considered and direct reaction field theories [108], whose validity seems to be 
questionable [109], were excluded from the present review. 

Some of the models are not complete without the specification of the solvent 
mean field, but it is not our main concern here, and we refer to the specific sections 
for more information. 

Spherical cavity 

G(r , r ' )  = ~ fnRn,~(r)R,~(r'). 
n=O m = - - r t  

(5.1) 

Ellipsoidal cavity 

G(r , r ' )  = ~ ~ flm.rm, Rtm(r)Rrm,(r" ). 
lm I'm" 

(5.2) 
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Cavity of general shape 

G(r , r ' )  = 1 ~  {T(r, si)Sij~(sj,r') + T(r',si)Sij'~(sj,r)}. 
O 

(5.3) 

Discrete model with fixed configuration 

G(r , r ' )  - T ( r ,  " B ,, ,,, , 0, = r )C (r ,r ) T ( r , r  ) 

= ~ Ta(r, ri)A~#(ri,rj)T#(rj,r'). 
ij 

(5.4) 

Orientational polarization in solvent mean field 

G(r, r ' )  = fl[(V 8 (r)V B (r'))B - (V B (r))B (V B (r'))B ]. (5.5) 

Self-consistent Madelung potential 

G(r , r ' )  = ~  ~ T(r, Uir" + q). 
i q 

(5.6) 

Pure liquid in the mean field approximation 

G(r , r ' )  = p N f d  3 rd  3 t~g(r, f2)T(r ,U(~)r '+ r). (5.7) 

Although the above list is not exhaustive, it shows quite well the variety of 
reaction potential response functions (or effective interaction kernels), which are 
the basic ingredients of the average reaction field type solvent effect theories. 

Many of these relationships have already been used in the literature, either 
in the above form or in their approximate version. One exception is the reaction 
potential response function for orientational polarization, which could be calculated 
from statistical mechanical simulation as a correlation function of the solvent mean 
potential. This would provide an interesting test of the validity of dielectric continuum 
models. 

There are further possibilities, suggested by the previous analysis, which are 
worth exploring in the future, namely the systematic application of distributed 
multipole approximation for the reaction potential operator. Work in this direction 
is in progress. 
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List of symbols 

: nonlocal many-body dipole polarizability matrix; 

: x, y, x Cartesian components;  

: nonlocal polarizability of  the ith solvent molecule;  

: many-body polarizability of  a collection of  solvent molecules;  

: charge density reponse function of  the total solvent system; 

: atomic orbital; 

: modified spherical harmonic (co = 0, 4); 

: excitation energy; 

: polarization charge density; 

: exact total energy of the so lu te - so lven t  system; 

: total energy of the solute-solvent  system in Hartree approximation; 

: solvent energy; 

: solvent monomer  energies; 

: unperturbed solvent energy; 

: energy calculated with mean field solute wave function; 

: kth eigenvalue of  the solute-only Schr0dinger equation; 

: dielectric constant (relative permittivity); 

: three-dimensional delta function; 

: free energy; 

: reaction potential factor in the spherical cavity model;  

: reaction potential response function; 

: angular pair distribution function; 

: total HamiltonJan of the so lu te - so lven t  system 

: solvent Hamiltonian; 

: Hamiltonian of  the ith solvent molecule;  

: solute Hamiltonian; 

: s o l u t e - s o l v e n t  interaction Hamiltonian; 

: energy functional; 

: atomic dipole moment  component;  

: normalized expectation value of  operator O; 

: reaction potential operator; 

: reaction potential function; 

: first-order density matrix; 

: Legendre polynomial  of  order n; 

: total wave function; 
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v 

v 

v 

qL 

aam 

Rnm(r) 
fiX(r) 

S 

T(r, r') 

U 
T(x) 
9B 

v: 

X 

X 
~(n) 

~fl . . .  V 

r~m( CO) 
Z(x) 

:solute wave function; 

:unperturbed solvent wave function; 

: solvent wave function; 

: unperturbed wave function of the ith solvent molecule; 

:solute wave function; 

: symmetry operator; 

: translation part of the 0.. symmetry operator; 

: ellipsoidal multipole moment functions; 

: atomic multipole (spherical harmonics) moment component; 

: reduced resolvent associated with B; 

: regular spherical harmonic; 

: total charge density operator of subsystem X; 

:screening function of the solvent; 

:matrix representation of the solvent screening function; 

: inverse of the atomic block of the overlap matrix; 

: Coulomb interaction kernel; 

: rotation part of the 0,. symmetry operator; 

:mean  field solute wave function; 

: potential operator of the unperturbed solvent charge density; 

: permanent potential of the solvent charge density; 

:solute potential operator; 

: solvent configurational coordinates; 

:solute internal coordinates; 

: traceless Cartesian multipole moments; 

: spherical harmonics; 

:canonical  partition function. 

Appendix A: Equivalent charge densities 

The general expressions for electrostatic interactions can be conveniently 
written in terms of a continuous charge density p(r). In computational applications, 
it is often more convenient to replace continuous distributions by a set of point 
multipoles. Then one has, for example, a discrete point charge distribution: 

p(r) = ~ qiS(r - ~), 
i 

a discrete point dipole distribution: 
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P(r) = ~ m i S ( r  - ~), 
i 

and higher multipolar distributions. 
It is possible to have a shorthand formalism, valid for all the discrete multipolar 

distributions by introducing the concept of equivalent charge density [49; 48, pp. 
60-61]. This quantity can replace formally the continuous charge density in the 
appropriate formulae and thus one can avoid complications with the handling of 
special cases of multipolar distributions. 

Let us consider the electrostatic potential V(r) of a set of traceless Cartesian 
~: (n)a multipole moments ",a#...v situated in points a: 

( - 1 )  n ~:)n)a w w 1 ( A . 1 )  
V(r) = Z Z (2n---]')!! ~aB. . .v 'a '#""  "Vv la - r - - - - - i"  

a n 

Applying the Laplacian to both sides of this expression of the potential, using the 
Laplace equation 

AV(r) = - 4 ~ p ( r )  (A.2) 

and the relation 

1 
A - -  = 4n'8(a - r), (A.3) 

l a - r l  

the following general expression is obtained for the equivalent charge density: 

(-1) n J:(n)a W w . V v S ( a -  r). (A.4) 
p(r) = Z Z (~n---1)[[ ~a#...v*~VP.. 

a n 

The explicit expression of the equivalent charge density with the first few traceless 
Cartesian multipole moments [110] is given by: 

a a 1 t ~ a  w a  w a  p(r) = Z {Q a - #aVa + -ff "-" alt-- a--~ + ' '  "} •(a - r). 
a 

(A.5) 
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